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I. INTRODUCTION

The question of strong Langmuir turbulence in magnetized plasmas is
important in studies of beam-plasma interactions in both space and
laboratory plasmas. Heretofore, studies of strong turbulence theory in
magnetized plasmas have centered on the dynamics of collapse and the
shape and stability of the localized structures which result. However,
such structures are expected to have electromagnetic signatures at
harmonics of the electron plasma frequency. While the electromagnetic
radiation from Langmuir solitons has been extensively studied for
field-free plasmas,l"+ there has been scant treatment of the problem
of the strongly turbulent radiation process in magnetized plasmas.

This problem is of particular relevance due to increased interest in
experimental studies of electron beam driven strong turbulence in the
laboratory.sn9 It is our iIntention to address this question in the
present work, and to derive expressions for the radiation emissivity
from spiky Langmuir turbulence at the first and second harmonics of
the electron plasma frequency.

The organization of the paper is as follows. 1In Sec. II, we
derive an expression for the emissivity from an arbitrary, cylindri-
cally symmetric soliton at frequencies w = Wes Zme (where W denotes
the electron plasma frequency). It should be noted that the treatment
of emission at the electron plasma frequency is restricted to the
limit in which the radiation wavelength is much less than the scale
length of the soliton. In order to investigate simplified scaling
laws between the radiation emissivity and the soliton amplitude, we

consider the limiting case of one-dimensional Langmuir solitons in

Note: Manuscript submitted December 7, 1979,
1




Sec. ITI. A numerical study of the angular dependence of the
emissivity is also presented in this section. In particular, we
investigate the variation of the radiation pattern with welﬂe (where
Qe is the electron cyclotron frequency). A summary and discussion
appears in Sec. IV, and the derivation of the plasma dispersion tensor

and the raciation source current is given in an appendix.

II. THE EMISSIVITY

We assume a localized Langmulr perturbation of the form
E(g,t) = V¢(r,z)sinwet, (1)

where V¢(v,2) defines the soliton envelope, and the ambient magnetic
field B (5B e ) defines the z-axis. The interaction between the

uoY To Nz
electrostatic field and the associated slow time scale oscillation in
the plasma density is implicitly included, and we use &n(r,z) to denote
the density caviton. Both ¢(r,z) and én(r,z) possess cylindrical sym-
metry about the z-axis, and it is assumed that ¢(r,z) and dn(r,z) are
odd and even functions of z respectively.

The radiated power is defined to be

T/2
1
P=- '}iz T— fdt fd3 X 6£(§9t) . dgs(?\{)t)) (2)
~T/2

where 65(¥") is the radiation electric field, and Gis(é’t) is the
source current due to the localized Langmuir perturbation. Equation
(2) can be expressed in terms of the Fourier amplitudes of ag(k,t) and

Gis(ﬁ’t) in the following manner




P=- (2m)% lim %fdakf dw Gg(k,w) . Gr'\],s*('l\‘.’w)’ (3)

Teo

where the asterisk (*) denotes the complex conjugate, and the Fourier

transform is defined as follows

£(k,w) = (211)‘“ jd3 xf dt exp(iwt-i}\c‘-%)g(')\zl,t). %)

-Q0

A self-consistent relation between the radiation field and source

current is derived in tne Appendix, and is of the form
4ri
;‘A’(h,w) . 5%(}6,(») = - —w_‘ Ggs(k,w), (5)

vwhere the dispersion temsor is given by (k = k_ éx +k, éz)

2
Aw) = 27 ok - k2 1) + elk,w). (6)

In Eq. (6), é is the unit dyadic, g(k,w) is the plasma dielectric ten-

sor, and we have that Cx = Eyy = el, exy = -eyx = 182, €0 = €35

_ .2 2 _ 2 = -2
1 W / (w Qe ), e, = wg Qe/

1]

€ = ¢ = € = ezy = (0, where ¢

Xz zX yz 1

2 _q2 =1 - w2 7.2 .o %

wlw Qe ), and €y 1 we /ws. Here w, we(l + Gnex/no) , where

n, is the ambient electron density and Gnex denotes the extremum of &n.

This dispersion tensor includes the strongly turbulent modifications to

the cold plasma approximation, and has been derived under the

restriction that the wavelength of the radiation be much less than the

scale length of the local perturbation.

Inverting Eq. (5) to find 8E(k,w) as a function of §J_(k,w), we

N AS N

obtainl® i




A (k,w)
4ni “ss’n - A%
65(&9“’) = - @ A(k,m) g(k’w) % (k,w) * 6;3;(}6,0)); 7
n

where A(k,m) is the determinant of é(&,w), ASS(&,w) is the trace of the

classical adjoint of A(k,w), and a(k,w) = 8E(k,w)/|8E(k,w)| is the unit
v LVERAY) N NNy

polarization vector. The power radiated per unit solid angle subtended

by k is found by substitution of (7) into (3), and it can be shown that

- ~ A (kW)
dar_ (2m)6 1im 1 Z dk2k do _ss 77
a2 T T T “ 12 Ak,

0 0 k2 40 2

v =1 2
k -ki

N * 2
a8 Gl 66 -, ©®

wherei:‘denotes a sum over the wave modes of the system,
+

ko = 21 sin 6d8 (where 6 denotes the angle between k and Bo). and we
N N
N
have summed over the contributions of positive and negative w. The

appropriate wave modes are described by

2 2
¢ ki - 1- 2azjl - a?) 9)
w2 2(1-a?) - Bz(sinzexp) ’
where the " + " and " - " denote the ordinary and extraordinary modes

respectively, a2 = wéz/wz, g2 = Qezlwz, and p2 = sin"0 + 4(m/Qe)2
x(1 - a2)2cos2g. This corresponds to the well-known Appleton-Hartree
dispersion relation in which m; has been substituted for w, to des-
cribe the strong turbulence effect.

In this paper we treat emission at w = We» Zwe, and write the .

source current as the sum of contributions (see Appendix)




6

()
53,5 (}\g,w) = 83

('l\c‘) G(w—we) + Ggs (}6) § (w- 2we) where

W,
GJ(I)(k) = - (211) d3x  exp(- ik x) 2n
"o

X

Q2 w 9
e e e -~
(V¢ + :,:Z‘_‘ﬁe_z Ve +i ;,:z_—g';z gz*vct), (10)

ags(z) () = 1(2m)" mee'/:ﬂx exp (~1k+x)

X

Q2 Q2
2 e 2 e
(v ¢+t =7 Y, ¢)(V¢ s A
e e e e
wenez * ~
t Aoz Bl (2] -, VW)

e

Q 2
e
+ é = (lrt’zwe)] '(V + mez-ﬂez V.L)((V¢’)2

Q 2
2
'*"";e-z'e:!ﬁ;z' (v, 9) ) s (11)

vV - ; (3/3z). 1f we write the square of the delta function as

n

and V

Gz(w-w ) = 1im(T/2~ )S(m—w ) and evaluate 3A/3k? for the appropriate mode,
T-po0

then the expression for the radiated power becomes

w)
(211)52fdk2kf dp —poY— ss - 8 (k2-12)

« 13, w65 @] sw) +
lg(i)(,\,’“’ 35 k w-w,




YDA

~ (2) 2
+ 13,_&%,“,) A (E)l §(u-20 ) | . (12)

In the evaluation of the radiated power at w = Wg and Zwe which
~ L
follows, we make use of the expressionl® 4 = - 1() 2 Y R(h LA LA )
i 55 22 12 22 32
to describe the unit polarization vector, where A is the

~

classical adjoint of é. It should be noted, however, that this approach
is invalid when the eigenvalues of é are degenerate (i.e., when
k+2 = k_2). Since this occurs in the limit in which 2, > 0, care must
be exercised in order to treat the field-free case.
A. Emission at w = Wyt

In this frequency regime we are restricted to consideration of
waves whose wavelength is much less than the scale length of the per-
turbation,which is equivalent, in practice, to the condition that
c2ki2/u)e2 >|6nex/nol. The emissivity n (& w—ldP(m)/ko) is defined to
be the power radiated per unit frequency per unit solidwangle subtended

by &. In computing n(we,e), we retain only the contribution due to the

oscillatory current at wg (i.e., Sggl) Qf)) and find

3 -2 4 2
n(m e) = _Se_g. ex Z M N ZSineCOSG I
e’ b4nc n n pcos?e + I

wez 5 Bnex S‘lez 2
- 2 - 2.
77 (Nd: sin<o + n_ ——z-zwe (sin e+p)) I-L (13)

where

o

In 2 8
W = J/. dz J drr cos(k,z cosG)Jo(klrsinB) Ei V“¢, (1%
0

8

8
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o e

o0 o
§
1 - ./-'0° dzj; drr sin(i,z c0s6)J (k,rsing) i Ve, (15)

p2 = sin"e + A(wez/ﬂez) (Gnex/no)zcosze, N(Eck/we) is the index of

refraction, and

n:k =] -~ anex Qez . (16)
2
n + —2—(»;2- (sin Oxp)

B. Emission at w = 2we:

In this frequency rcgime, the strongly turbulent contributions to
the dielectric properties of the plasma can be ignored, and the Appleton-
Hartree dispersion relation!! can be employed. After retaining only the

oscillatory source current at Zme in (12), we find that

2 N, (pxsin28)
_ e + ‘
n(Zme,e) = 35"me2°3“e %; 5cos26 (A”,“ IH,”
‘ 2
* A“!‘L 1“9"' * A-‘-:“ I-‘-a“ + A-l,J- I.L,J.) an
where
In’“ = ~Z; dz-/; drr cos(k,zcosb) Jo(kirsine) (V¢)“2 ,

1“,1 = “l; dz./; dr sin(kizcose) Jo(kirsine) (V¢)H(V¢)1 .




1 o

Il’“ =.Z: dz“/; drrsin(kizcose) Jl(kirsine) (V¢)“(V¢)l,

= 2
IL,L —J/; dz-/: drrcos (k zcos6) Jo(kirsine) (v9), (18)
and
20 4
= - l 30 2 29 - e 2 2a_ l
A“ah B 2 kiSine(_z‘Ni cos“0 (w 2_5‘2 2)(4(» 2_9 ZT(N__t sin“6 4)
e e e e
2.0 2 2
"4 ((7(:39 Z?(dez—ﬂ 2) (31“2%0)) ,
Ye e We e
mez ,
Al,* = 627:5;7 N, “sinécos®
2

w 4w 2
-2 2451020 + e 244n2g - 3
A.L,“ 'w—ezjﬁz kicose (N:k sin<@ W (N:i: sin<6 4)

Q2 6w 2-Q 2
e e . A
T 4w 2 by 2-Q 7 (sin630) ] »
e e

e
6w ¥
=1 12 .24 - e 2ain2f- 3
AL,L =3 kisine(; N, “cos<6 (o 2-0. D) (bw 2-0 2)(Ni sin<0 )
e e e e
(5w %-0 2)q 2
1 e e e 2
+ 7_ 7.0 2 (sin 9.’;0) . (19)
4 (me QeZ)(Ame Q, )
In addition, p2 = sin"6 + 9(we2/9e2)cosze, and
3we2
n,? =1 (20)

- 2 - 2 Z .
12we 29e (sin“63p)

)




I1II. THE CASE OF ONE-DIMENSIONAL SOLITONS

We choose to apply the expressions derived in Sec. II to the case
of one-dimensional solitons since this is the only regime which is
analytically accessible, and for which the angular spectrum of the
radiation may be obtained in a relatively straightforward manner. We

assume the electric field and plasma density perturbations to be of the

12

form

V¢ (r,z) = E(r) sech[K(r)z]%z, 1)
and
éHéELEL = -6 Kz(r)ke2 sech2lk(r)z], (22)
o

where Ae is the electron Debye length, 1/k(r) characterizes the parallel
scale length of the perturbation,

v.T,
=12 «2(r)A 2(1 +ii) (23)
, . T ,

W(r) = E2(r)/8m, Ti and Y; are the ion temperature and ratio of specific
heats, and Te is the electron temperature. In addition, we assume that
x(r) = Koexp(— r/p), where o (>> Ko-l) characterizes the transverse

scale length of the perturbation. It must be remarked that in order to

neglect the radial component of the soliton field, we must have that

2
w
e
v, 0l > gzg= 17,0l (24)
e e
and
1 v
-1 -1 - e
J (ke )|v“¢| >> tan (ke )Jl(kKo )W |v*¢|. (25)
9 !

e S TLANAMIANAGE R o

R Lol i e T SR T .



As a result, we cannot treat the case in which w, is arbitrarily close

to Qe by means of Eqs. (21) and (22).

Use of (21)-(23) immediately yields the following expressions for

the emissivity at we and 2we

3ﬂ2 Ve ’ noTe Gnex -2 YiTi - 2
ﬂ(weye) = 37 \c )‘e (_“'n ) 1 +T sin“6

o]

5 2
Ni (pEsin48)

x - 1 2 (26)
; e lx
1 and
4 2 3 2
! . (ve n Te N, (p£sin 8)
) = T_ _€ _o € 2 2 2
{ n(2ug,8) = 3 = tan D v, 2O 2, @7
i +
s
) 2 =
1 where v, Te/me,
3 2t"’eh 3
= =2 2 20 - /N 2 2 - =X
‘l’i(e) 5 N:t cos<0 (w 2:»9 2) (A(DT‘Q—Z) \Ni sin<o 4)
e e e e
7we2 Q 2
(28)

e in2g-
Y 4w 70 ) (G -0 27y (sint6z0),
e e e e

and the source integrals are
o0

k,2cos?e mk, cosB
= + W(r) %
Ili /drr (1 + —T(-z—(—rT——) noTe Jo (kirsine)sech( 2% (1) ), (29)
)

o0

k,2%cos8 7k, cos@
+ W) +
” fdrr 7@ noTe Jo(kirsine)csch (__—ZK(I‘) ) . (30)

—
n

[o]

10




The only regime in which (29) and (30) can be integrated
analytically is the case for which k:h < Kge However, it is important to
recognize that n(me,e) has been derived subject to the condition that
ki > Ky (which is equivalent to 6 vz Ni2 > ¢2 |6nex/no|) and no further

analytic reduction is possible for the case of emission at wg (29).

Turning, therefore, to the case of emission at Zwe, we find that when

v€2 6nex
6 ('_) << ’ (31)

the emissivity becomes

\ [ 3w T
16 e} S Yiti
n(2we,9) =3 (C_) W 3 (l + Te ) izai(e)’ (32)

where Wo = W(r = 0), and
k,*o"tan26
tsin? +
®, (0) = p£sin”0 2(9) Y (33)
+ PN, + (1 + k,2p2sin2g)3

Thus, n(Zwe,G) N ki“p“ in the limit in which kip <1, and

n(Zme,e) N (kip)_2 in the opposite case.

The emissivity expressed in (32) and (33) admits relatively
simple numerical analysis, and we display the angular spectra of the
ordinary and extraordinary modes in Figs. 1 and 2 by plotting @i(e) for
0 6 < 7/2 and several choices of we/Qe and wep/c. As shown in the
figures, there is a quadrupole radiation pattern for both the ordinary
and extraordinary modes, which is ..ighly sensitive to the transverse

scale size of the soliton. Specifically, for wep/c > 1 the radiation

11
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is strongly beamed in the directions parallel and antiparallel to soli-
ton propagation, and for wep/c € 1 peak emission occurs for 8 & n/4.
We note that for wep/c < 1, the emissivity scales as n(2we,e) n sin?26

in the limit of large we/Qe.z’q

In Fig. 3, we plot n+(2we,9)/n_(2me,9)
for parameters consistent with those used in the computations of Fig. 1.
We remark that this quantity appears to be relatively insensitive to
over the range studied (i.e., 0.1 < mep/c < 10 ), and we display the
result for wep/c = 1. The principal results are that (1) for we/Qe <1
the ordinary mode tends to dominate the emission, but that this

situation is reversed when me/Qe > 1, and (2) that the characteristic

dominance of either mode is greatly enhanced for 6 2 40°,

Finally, we observe that condition (31) is equivalent to the re-
quirement that Wo/noTe >> 12(ve/c)2, and that it is clear from (32) that

in this limit n(Zwe,e) N Wo.

In order to treat the case in which k _ < K,» We must rely on

wholly numerical methods. To this end we first rewrite

2/v \° 3 y.T.
n(w_,8) =3H{-2.) Snr (1+-22 p{D) (34)
e 3 "o’e +
8 \c w T
e e +

and

3
~
N
14
[
@
~
]
@ lg
3
\/M
<
o |o
S
€ lnu

v,T
n T (1+ 11 E pD, @39)
o e x
T +
e t

3
e
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where

«©

N?sinze(p t sinze)

1) _
Pt = 5 dx xJo(Ntxsine)[%xp( 2xc/mep)
0

kfcosze wk+cos6 2
+ ——— | sech | —— exp(xc/meo)] R (36)

K 2k
o o

and
Nfsinze(p * sin20)

2
wi(e) dx xJo(Ntxsine)

sz) =
h P

mk, cosb 2
x esch | —— exp(xc/wepﬂ . (37)

2k
o

The dependence of the emissivity at w = Wes and Zwe on both 6 and wo
(1,2)

are contained in P+

, and it is these quantities that we evaluate
here. Note, again, that the condition required for the validity of (34)

1/2

2
is that 6Ni(ve/c) > kA v (Wo/noTe) , and that N, ~ |6nex/nol " WO/noTe

while NE ~ 1. Thus, it is difficult to satisfy this requirement for
ordinarymode waves, and we restrict the analysis to consideration of the
extraordinary mode emissivity at w = we {(no restriction is necessary for
emission at Zwe). It is the existence of an electromagnetic mode with
frequency w = w, and index of refraction N ~ 1 which constitutes a major
distinction between magnetized and unmagnetized plasmas.

We consider the case of emission at w = We first, and plot the

(D

results of the numerical integration of P versus wo/noTe in Fig. 4.
It should be noted, again, that the constraints on the analysis in this

frequency regime that N_(ve/c) > Koxe > Ae/p. In the results presented, we




chose Te = 0.1 keV and mep/c = 10, which imply that p = 715 Xe and

1.4 x 1073 < Kle & 1.4 x 1072, For simplicity, we have assumed that

Ti = 0 in the analysis. It is clear from the figure that the angular
spectrum depends critically on both we/Qe and the soliton amplitude,

and that no simple scaling law can be found between n_(me,e) and
wp/noTe. It should be observed, however, that while increases in plasma
density (i.e., in me/ﬂe) leave the scaling at low levels of scoliton
amplitude relatively unchanged, the scaling of the emissivity with
wolnoTe and the angular spectrum of the emission are substantially

altered at higher levels of wo.

In Figs.5 and 6 we plot the results of a numerical integration of

(2)

(2)
P+ and P

versus wo/noTe respecti ely, It 1is clear from both
figures that (1) as wo increases we recover the result in (32) in

which ni(Zwe,e) ~ wo, (2) at lower levels of wo the emissivity iucreases
faster than Wo, and (3) the angular spectrum of the emission is sensi-

tive to the soliton amplitude. We also observe that while the

(2)

+ ) is relatively insensitive to the

ordinary mode emissivity (i.e., P
plasma density, the extraordinary mode emissivity is greatly modified
in going from we/ﬂe = 0.1 to me/Qe = 10. This can be explained by
noting that the emission is in the slow ertraordinary mode for

we/Qe = 0.1 (i.e., the emission frequency is below the upper hybrid
frequency), and the fast extraordinary mode for we/Qe = 10, This will
have severe consequences on the radiation observed from outside the

plasma, since slow extraordinary mode waves cannot readily escape from

the plasma without tunneling through the upper hybrid layer or mode




coupling to the ordinary or fast extraordinary modes, Finally, we
remark that, as shown in (32), the angular spectrum of the radiation
and the scaling of ni(Zwe,e) with W should also be sensitive to the
transverse dimension of the soliton; however, it is beyond the scope
of this work to treat this scaling in the regime in which ki > Ko*
IV. SUMMARY AND DISCUSSION

In this work, expressions have been derived for the radiation of
an arbitrary three dimensional Langmuir wave packet at w = we and Zwe
in a uniformly magnetized plasma. The analysis of the radiation at the
plasma frequency has been limited to the regime in which the radiation
wavelength is much less than the scale length of the soliton in the
interest of deriving an analytic expression for the emissivity, which
imposes the requirement that 12(ve/c)2Ni 2 wo/noTe. Since the only
electromagretic mode in a field-free plasma which frequency w = We has
an index of refraction N2 ~ wo/noTe’ this condition imposes a severe
restriciion on the present analysis to that of a very hot plasma. How-
ever, the presence of an ambient magnetic field introduces an additional
mode with a mixed electrostatic/electromagnetic polarizatica (i.e., the
extraordinary mode) having an index of refraction of the order of unity
in the vicinity of the plasma frequency, and which presents no
such severe restriction. While these waves cannot readily escape from
the plasma (unless some means of tunnelling through the upper hybrid
layer or mode conversion to the ordinary or fast extraordinary modes
is possible) and should not be an important characteristic of radiation

from astrophysical plasmas, study of this radiation mode may be

important in laboratory plasmas.5~?




In order to determine relatively simple expressions for the
radiation emissivity and, thereby, to determine the angular spectrum of
the emission as well as the scaling of the radiated power with soliton
amplitude, the specific case of one dimensional Langmuir solitons has
been studied in some depth. In this limiting regime, it is shown that
the angular spectrum is sensitive to both the soliton amplitude and to
the transverse scale size of the soliton. While ro simple scaling law
between the emissivity and the soliton amplitude is readily apparent

for w = Wes it is clear that for w = Zme the emissivity is linearly

proportional to the soliton amplitude when WO exceeds a certain thresh
old which depends on the plasma density, the ambient magnetic field,
and the angle of propagation of the radiation. The immediate signifi-
cance of this result is to the scaling of the second harmonic

radiation in type III solar bursts.?
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APPENDIX: THE DISPERSION TENSOR AND SOURCE CURRENT

The fluctuation fields giving rise to the emission are of high

order in V¢, and in order to treat emission at We and Zwe we must solve

the equations

g—av=-5— st - v v 4 g 3 yev, (A1)
t A~ me n, v v e a2z n
_ 13 _ 4me ¢)) (1)
Vx8B==orSE -5 [(no+6n)dx + (0’77 + dn)y >  (A2)
=13
7 x 55 = - 3¢ 52 . (A3)

where GE and 6% are the radiation fields, Gx is the high order velocity
1)

and v(l) are the first order density and velocity

fluctuation, and n v

fluctuations. Note that én, which describes the caviton structure, is
itself of second order in V¢. Thus, the term in én Gx is of at least
fourth order in V¢ and gives rise to the turbulent shift in the plasma
frequency. In addition, the term in an(l) is of third order in V¢
and is responsible for the oscillatory current at W+ In contrast,
the terms giving rise to emission at Zme are of second order in V¢.
Eliminating 62 from this system of equations, we find after some

straightforward manipulations that

' m
c 2 _ . __e A1) oy (1)
[z ax-12p +1-g] -omaw -3 ¢ (x ™ e

4rie _bref3 , (1) ) .
* (én 6"\?&,(» w2 (8!: (n + 5“)3\’, )h,w ? (a4)




and
m
- dw e (1) o (1)
63(§’“) 4ﬂeno o Ldg(h,w) te (X VX )k,w] ’ (45)

where ( )k " denotes the Fourier transform of the enclosed quantity,
’

= - 2 2 = e =
1 W, Jw*, Oy o

= = 2 2 _ 2
o g / (w e, ), o, v yx

Txx yy z

- 1 2 2-2 = = = = Q.
wg Qe/w(w Qe ), and Ogz = Tpn oyz ozy 0. In order to
evaluate the convolution in 6ndv, we assume the emitted spectrum to be
N

sharply peaked and write &x(&,w) = Sx(&o’mo) G(k—ko)é(m—mo). It

follows, therefore, that if k >> |V4/¢|, then
(Snav)k z §név (k,w). (A6)
r\,'\‘,w non,

Combination of (A4)-(A6) then vields Eq. (5), in which the source

current is

dw R ), _sre [ ) Q
6£s(§’w) “%r e 2 qz 'VX )k,m wZ \3t G 6n)x ,wl®
n, n,

(A7)

The first order density and velocity fluctuations satisfy the

equations
3 (1) (1) _
Y n + novﬁi o, (A8)
and
é—-v(l) = - & Vé¢sinw t + Q e x v(l). (A9)
3t A, m, e e nZ g
The solutions to (A8) and (A9) follow immediately,
1) o 2 Qe2 2
n = - mewez (V ¢ + W V.L ¢) sinwet, (A10)
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¥
i Q 2
{ (1) _ _e e
‘ X i (V¢ + % 2-0 2 VL¢) coswet
] e e e e
[
: w O
i e e a
+ W (EZ x Vrb)sinwet . (All)

vt e aada

Substitution of (Al0) and (All) into (A7) reproduces Eqs. (10) and (11).
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Fig. 3 — Plots of N4 (20¢,0)/M.(2w5,0) for wep/c = 1 and (a) w, /S = 0.1, and
(b) we/SY = 10
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